Hire an Illini

Carl Yang

  • Advisor:
    • Jiawei Han
  • Departments:
  • Areas of Expertise:
    • Applied machine learning
    • Network data science
    • Graph data mining
  • Thesis Title:
    • Multi-Facet Graph Mining with Contextualized Projections
  • Thesis abstract:
    • The goal of my doctoral research is to develop a new generation of graph mining techniques, centered around my proposed framework of multi-facet graph mining with contextualized projections, for more systematic, flexible, and scalable knowledge discovery around massive, complex, and noisy real-world context-rich networks across various domains. Traditional graph theories largely overlook network contexts, whereas state-of-the-art graph mining algorithms simply regard them as associative attributes and brutally employ machine learning models developed in individual domains (\eg, convolutional neural networks in computer vision, recurrent neural networks in natural language processing) to handle them jointly. As such, essentially different contexts (\eg, temporal, spatial, textual, visual) are mixed up in a messy, unstable, and uninterpretable way, while the correlations between graph topologies and contexts remain a mystery, which further renders the development of real-world mining systems less principled and ineffective. To overcome such barriers, my research harnesses the power of multi-facet context modeling and focuses on the principle of contextualized projections, which provides generic but subtle solutions to knowledge discovery over graphs with the mixtures of various semantic contexts.
  • Downloads:

Contact information:
jiyang3@illinois.edu