skip to main content

Caroline Kathrin Riedl

Caroline Kathrin Riedl
Caroline Kathrin Riedl
Research Assistant Professor
467 Loomis Laboratory


  • Diploma in Physics. Friedrich-Alexander University of Erlangen-Nuremberg, Germany. 2001.
  • PhD in Particle Physics. Friedrich-Alexander University of Erlangen-Nuremberg, Germany. 2005.


After my return to UIUC from CERN in mid-2018, I took over the scientific supervision of the sPHENIX project at the Nuclear Physics Lab (NPL). Our group is in charge of building almost 5,000 absorber blocks for the electromagnetic calorimeter of sPHENIX, an experiment at BNL scheduled to see first beam in 2023. Each block consists of an array of 2,668 manually assembled scintillating fibers in a tungsten-epoxy matrix and is constructed from scratch by our NPL technicians and student workers. Since 2019, I have been the corresponding level-3 manager with BNL. In 2020, I moved with the help of our UIUC COMPASS grad students and postdocs COMPASS data productions from Blue Waters to the next-generation NSF-funded supercomputer Frontera at TACC. I currently serve as a member of the COMPASS publication committee and help to publish physics results in a timely manner.

I joined the Department of Physics at the University of Illinois as Research Assistant Professor in 2013. In 2013-2015, I was the project coordinator for a detector upgrade for COMPASS at CERN (Geneva, Switzerland / Prevessin, France). I organized the prototyping, construction and assembly of a large-area planar drift chamber (DC5). The DC5 detector was constructed in the US, mostly at the Nuclear Physics Laboratory. This would not have been possible without a small army of undergraduate students. The detector parts were shipped to CERN in fall 2014 and assembled. DC5 was installed into COMPASS in May 2015 and has been successfully collecting valuable data since then in two Drell-Yan runs 2015 and 2018 and two GPD runs in 2016/17. In 2018, I served as the COMPASS technical coordinator. From 2016 through 2019, I was able to secure grants for COMPASS data productions on NCSA's supercomputer Blue Waters. Our team used more than 13 million Blue-Waters node hours to produce COMPASS data for high-level physics analysis, for the study of high-precision detector efficiencies and for detailed Monte-Carlo simulations.

After my PhD on HERMES data, a fellowship with INFN Frascati (Italy) and a postdoc association with DESY allowed me to continue my research at DESY. I participated in the commissioning and operation of the HERMES recoil detector and lead the analysis and publication of hard-exclusive data collected with this detector. From 2008 to 2010, I was the deputy analysis coordinator of HERMES and from 2007 through 2012 the DVCS and exclusive physics convener. In 2011 and 2012, I worked from DESY as main data quality manager for CMS, one of the LHC experiments at CERN, and contributed to the analysis of the Higgs-boson decay into two tau-leptons and successively into muons.

I received my diploma degree in physics from the University of Erlangen-Nuremberg, Germany, in 2001. My diploma thesis was on (1+1)-dimensional quantum field theoretical models and massless mesons in dense nuclear matter at zero temperature. From 2002 on, I focussed my research on experimental particle physics and worked at DESY (Hamburg, Germany) on data from the HERMES experiment. I investigated the tensor structure of polarized deuterons in deep-inelastic electron-deuteron scattering and received my PhD with the University of Erlangen-Nuremberg in 2005.

Academic Positions

  • Graduate student / teaching assistant, University of Erlangen-Nuremberg, Germany. April 1, 2002 - May 31, 2005. 
  • Research Associate (Fellow), INFN Fracsati, Italy. Particle Physics. June 1, 2005 - May 31, 2006.
  • Research Associate (Postdoc), DESY-Zeuthen, Germany. Particle Physics. June 1, 2006 - December 31, 2012.
  • Research Assistant Professor, University of Illinois at Urbana-Champaign. Nuclear Physics. Since January 7, 2013.


Research Statement

I am interested in the structure of nucleons and nuclei. Modern approaches to investigate nuclear structure involve transverse momentum dependent parton distribution functions (TMDs) and generalized parton distributions (GPDs). COMPASS at CERN collected TMD-related data in 2015 and 2018. The analysis of part of these data hints to a sign change between the Sivers TMD measured in Drell-Yan vs. that measured in semi-inclusive deep-inelastic scattering and grad students of our group currently analyze the full data set. The future sPHENIX data collected with transversely polarized proton beams will also allow for TMD-related studies. We will analyze these data while preparing the advent of the Electron Ion Collider, the future polarized electron-proton collider at BNL to start after 2030.

Undergraduate Research Opportunities

In 2021, there will be plenty of opportunities for undergrad hands-on work at the Nuclear Physics Lab, where we are building absorber blocks for the sPHENIX electromagnetic calorimeter.

Research Interests

  • Experimental nuclear physics: spin structure of the nucleon in Drell-Yan, semi-inclusive deep-inelastic scattering (SIDIS) and hard exclusive processes using polarized nuclear targets and hadron or lepton beams
  • Transverse-momentum dependent (TMD) degrees of freedom in the hadron
  • Development and construction of detectors for nuclear-physics research.

Selected Articles in Journals

Articles in Conference Proceedings

Conferences Organized or Chaired

  • Major contribution to the organization of the HERMES-end-of-data-taking sym- posium, June 2007
  • Spin physics session at XVIII International Workshop on Deep-Inelastic Scatte- ring and Related Subjects (DIS 2010), Florence (Italy), April 19-23, 2010.

Related News