11/28/2011
Although they found that graphene makes very good chemical sensors, researchers at Illinois have discovered an unexpected “twist”—that the sensors are better when the graphene is “worse”—more imperfections improved performance.
Written by
Although they found that graphene makes very good chemical sensors, researchers at Illinois have discovered an unexpected “twist”—that the sensors are better when the graphene is “worse”—more imperfections improved performance.
The research group, which includes researchers from both chemical engineering and electrical engineering, and from a startup company, Dioxide Materials, reported their results in the November 23, 2011 issue of Advanced Materials.
“The objective of this work was to understand what limits the sensitivity of simple, two-terminal graphene chemiresistors, and to study this in the context of inexpensive devices easily manufactured by chemical vapor deposition (CVD),” stated lead authors Amin Salehi-Khojin and David Estrada.
The researchers found that the response of graphene chemiresistors depends on the types and geometry of their defects.
“Nearly-pristine graphene chemiresistors are less sensitive to analyte molecules because adsorbates bind to point defects, which have low resistance pathways around them,” noted Salehi-Khojin, a research scientist at Dioxide Materials and post-doctoral research associate in the Department of Chemical and Biomolecular Engineering (ChemE) at Illinois. “As a result, adsorption at point defects only has a small effect on the overall resistance of the device. On the other hand, micrometer-sized line defects or continuous lines of point defects are different because no easy conduction paths exist around such defects, so the resistance change after adsorption is significant.”
“This can lead to better and cheaper gas sensors for a variety of applications such as energy, homeland security and medical diagnostics” said Estrada who is a doctoral candidate in the Department of Electrical and Computer Engineering.
“What we determined is that the gases we were sensing tend to bind to the defects,” Pop said. “Surface defects in graphene are either point-, wrinkle-, or line-like. We found that the points do not matter very much and the lines are most likely where the sensing happens.”
Pop is also affiliated with the Beckman Institute for Advanced Science and the Micro and Nanotechnology Laboratory at Illinois. Additional authors of the paper, Polycrystalline Graphene Ribbons as Chemiresistors,” include Kevin Y. Lin, Myung-Ho Bae, and Feng Xiong. This work was supported by Dioxide Materials, by ONR grants N00014-09-1-0180 and N00014-10-1-0061, and the NDSEG Graduate Fellowship (D.E.).
______________________
Contact: Eric Pop, Department of Electrical and Computer Engineering, 217/244-2070.
Richard Masel, Department of Chemical and Biomolecular Engineering, and Dioxide Materials CEO, 217/239-1400.
Cover image: Alex Jerez,Beckman Imaging Technology Group.
If you have any questions about the College of Engineering, or other story ideas, contact Rick Kubetz, writer/editor, Engineering Communications Office, University of Illinois at Urbana-Champaign, 217/244-7716.