Jont Allen

Jont Allen
Jont Allen
  • Professor
(217) 369-7711
3062 Electrical & Computer Eng Bldg

Education

  • Ph.D., The University of Pennsylvania, Electrical Engineering, 1970

Biography

Allens website is (http://auditorymodels.org)

BIO: During his 32 year AT&T Bell Labs career (after 1998, AT&T Labs) Allen specialized in nonlinear cochlear modeling, auditory and cochlear speech processing, and speech perception. While at AT&T Allen wrote more than 50 sole-authored journal articles on hearing, cochlear modeling, signal processing, room acoustics, speech perception and the articulation index (AI, a.k.a. speech transmission index (STI), Speech intelligibility index (SII)).

In 1982-1987 Allen he had primary responsibility with the development of the first commercial multiband wideband dynamic range compression (WDRC) hearing aid, later sold as the ReSound hearing aid. During this 5 years he was working closely with clinical audiologists and speech and hearing scientists, and with several hearing aid manufactures (Starkey, Phonak, Etymotic), who subsequently funded Allen's work. During this period Allen wrote the first DSP code and developed the first fitting system, based on loudness in 1/2 octave bands (LGOB) which was used by ReSound as their commercial fitting system for many years. He was also responsible for the first analog compression circuits used in the primary product, that was produced by AT&T for ReSound, at the Allentown PA silicon foundry.

Starting in 1986, Allen developed one of the first systems for non-evasively evaluating cochlear hearing using distortion produce otoacoustic emissions (DPOAEs), known as the (Cub^eDis) measurement system, which for several years (1988-1995) was commercially sold by Etymotic research, and after that by Mimosa Acoustics, for which Allen serves as the Chief Technology Officer (CTO).

From 1998-2003, while at AT&T Labs, a spin off from Bell Labs, Allen worked on Loudness and consonant perception, which is a problem closely related to AI theory.

In Aug. 2003 he join the ECE faculty, University of IL, Urbana where he teaches and works with his students on noninvasive objective diagnostic testing of cochlear and middle ear function, based on acoustic reflectance (aka impedance) methods of the middle ear, auditory psychophysics, speech processing for hearing aid applications (noise reduction and multiband compression), speech and music coding (bit-rate reduction) and speech perception (models of loudness and masking) and hearing aid transducer modeling.

He is most actively working on the theory and practice of human speech recognition, for both normal and hearing impaired hearing, with the goals of improving hearing aid signal processing as well as automatic speech recognition robustness in the presences of noise and filtering. From 2003-present, Allen has a number of students active in various projects on speech perception, middle ear models and hearing aid signal processing (Allen's Research Group) In the last 10 years Allen and his students have collected several large databases of speech perception in noise, by normal and impaired human subjects. This work has resulting in many publications on human speech perception. From 2005-present Allen has also studied reading disabilities in young children. This work has been in collaboration with Prof. Cynthia Johnson of the UIUC Speech and Hearing Science Department (and many of her students).

A third major research topic is the diagnosis of middle ear disorders, based on acoustic impedance measurements.This  work is well documented in the publications from 1974-2015 (http://auditorymodels.web.engr.illinois.edu//index.php/Main/Publications).

Allen has successfully developed several complex and innovative research programs, first at Bell Labs in 1995 (cochlear modeling), followed by the development of the Bell Labs multiband compression hearing aid (1985-88) (Now labeled as GN-ReSound en.wikipedia.org/wiki/ReSound), followed by his speech perception research at UIUC in 2003 with his group of highly productive students. This research has provided many deep insights into difficult, significant and challenging problems of speech perception. Specifically Allen and his students have identified the basic features of many plosive and fricative speech sounds. This has allowed them to manipulate the perception of speech with surgical precision.

Allen is well-versed in cochlear modeling, auditory neurophysiology, speech perception, speech processing, psychophysics, audiology as well as musical, speech and middle ear acoustics, acoustic impedance and reflectance, analog and digital signal processing, and clinical audiology. Allen has more than 20 US patents on hearing aids, signal processing and middle ear measurement diagnostics.

He teaches courses in mathematical physics (http://auditorymodels.web.engr.illinois.edu/index.php/Courses/ECE493-2013AdvEngMath), speech processing (http://auditorymodels.web.engr.illinois.edu/index.php/Courses/ECE537-2014SpeechProcessing), analog and digital signal processing, and clinical audiology, electroacoustics, transducer design (http://auditorymodels.web.engr.illinois.edu/index.php/Courses/ECE403-2013AudioEngineering). His special interest is speech perception, which brings together many of these fields in a relevant way. Additionally Allen has co-taught ECE-545 (Advanced Physical Acoustics) (https://courses.illinois.edu/schedule/2013/fall/ECE/545).

This coming semester he has introduced a new math course for undergraduates "ECE 298 JA - Concepts in Engineering Math" (http://www.ece.illinois.edu/academics/courses/profile/ECE298JA-120158, http://auditorymodels.web.engr.illinois.edu/index.php/Courses/ECE298JA-F15).

Since the early 1990's, Allen has been a visiting scientist in the Departments of Otolaryngology of Columbia University, City university of New York, and University of Calgary, and was an Osher Fellow at the Exploratorium Museum, San Francisco (www.exploratorium.edu/). He has been very active in IEEE and the ASA, running both major conferences (IEEE-ICASSP 1985, New York) and many small workshops.

Research Interests

  • Music perception
  • Musical Acoustics (guitars, fiddles, some wind instruments)
  • Evanescent wave propagation in horns
  • Transducer physics and modeling (Loudspeakers)
  • Wave propagation in inhomogeneous media. Acoustic horns.
  • Models of the outer hair cells of the cochlea. Biophysical model of hair cell membrane mechanical properties, as a function of membrane voltage. (with Paul Fahey, Univ. Scranton, physics dept.)
  • Modeling the middle ear in the time domain, with wave models. How does the eardrum transform the acoustic energy and funnel it into the cochlea?
  • Robust human speech recognition
  • Speech and music coding
  • Articulation index modeling of confusion matrix measurements, of consonant vowel sounds, in noise
  • Speech processing for hearing aid applications: Special signal processing techniques for removing reverberation and noise; multiband compression for loudness recruitment abatement;
  • Auditory psychophysics: Intensity just noticeable difference (JND), speech psychophysics; confusion matrices; information processing by the auditory system
  • Human speech recognition: Reverse engineering, measuring and modeling speech cues used by the human auditory system, when recognizing speech in large amounts of noise and with filtering; Articulation index; confusion matrices; information processing by the auditory system with speech as the signal
  • Noninvasive diagnostic testing of the cochlear and middle ear: Otoacoustic emissions measured in the ear canal; noninvasive diagnostics; distortion product measurements; SFOAE; impedance; power reflectance of the ear canal
  • Cochlear modeling: Mathematical models of cochlear function, including basilar membrane motion, biophysical models of outer hair cells; models of the micromechanics, including the tectorial membrane and cilia motions.

Research Areas

  • Acoustics
  • Adaptive signal processing
  • Analog integrated circuits
  • Audio, speech, music and auditory processing
  • Communications
  • Electromagnetic theory
  • High-frequency circuits
  • Microwave devices and circuits
  • Multi-Physics Modeling and Simulation
  • Nonlinear systems and control
  • Plasma Physics and Fusion
  • Radio and optical wave propagation
  • Signal Processing
  • Speech recognition and processing
  • Two‐Phase Flow and Heat Transfer

Research Topics

  • RF and microwave engineering

Books Authored or Co-Authored (Original Editions)

Selected Articles in Journals

Professional Societies

  • Member of the editorial board of: EURASIP Journal on Audio, Speech and Music Processing http://www.hindawi.com/journals/asmp/editors.html  
  • IEEE speech and language technical committee (SLTC) representative in Speech Perception (2004-present)
  • Acoustical Soc. of Am.: Active member on Publication Policy (2003-present)
  • Acoustical Soc. of Am : Active member of Archives and History committee (2004-present)
  • ICASSP General chair 1988 New York City

Honors

  • Life-time IEEE Fellow (2009)
  • Phonak Faculty Award (2007, 2008)
  • Visiting Professor Kings College of London, Aug. 2007
  • IBM Faculty Award (2005)
  • IEEE Third Millennium Award (2000)
  • SoundID Scientific Advisory Board (California 1995-2000)
  • 1991, International Distinguished Lecturer for the IEEE Signal Processing Society
  • 1990 Osher Fellow, Exploratorium Museum San Francisco
  • 1986-1995 Resound Hearing Aid Scientific Advisory Board member (ReSound is the first company to introduce wide dynamic range multiband compression into the hearing aid market)
  • 1986, IEEE Acoust., Speech, Signal Processing (ASSP) Meritorious Service Award
  • 1985, Fellow, IEEE
  • 1981, Fellow, Acoustical Society of America (ASA)

Teaching Honors

  • IEEE International Distinguished Lecturer for the Signal Processing Society (1991)

Research Honors

  • International Symposium on Middle ear Mechanics in Research and Otology (MEMRO); Kyungpook National University (June 28, 2012)

Public Service Honors

  • IEEE ASSP Society Award 1986 (1983-1985)

Recent Courses Taught

  • ECE 298 CLA (ECE 298 ONL) - Engineering Complex Linear Alg
  • ECE 298 JA - Concepts in Engineering Math
  • ECE 403 - Audio Engineering
  • ECE 410 (ECE 498 N4O, ECE 498 NS, ECE 498 NS4, ECE 498 NSO, NE 410) - Neural Circuits and Systems
  • ECE 473 - Fund of Engrg Acoustics
  • ECE 537 - Speech Processing Fundamentals
  • MATH 487 (ECE 493) - Advanced Engineering Math

Related News