skip to main content

Midwest collaboration, led by IQUIST, awarded $25 million quantum information institute

Midwest collaboration, led by IQUIST, awarded $25 million quantum information institute

7/21/2020 9:00:00 AM

The Grainger College of Engineering’s Illinois Quantum Information Science and Technology Center (IQUIST) will launch a National Science Foundation Quantum Leap Challenge Institute for Hybrid Quantum Architectures and Networks (HQAN). The new collaborative institute spans three Midwest research powerhouses, all of which are members of the Chicago Quantum Exchange: the University of Illinois, University of Chicago, and the University of Wisconsin. HQAN also includes partnerships with industry and government labs.

According to the NSF, Quantum Leap Challenge Institutes bring together multidisciplinary researchers and diverse partners to advance scientific, technological, and workforce development goals. Established with a $25 million, five-year award, HQAN is one of only three institutes awarded this year. 

Brian DeMarco, director of HQAN and physics professor Grainger College of Engineering. Photo credit Brian Stauffer, University of Illinois Urbana-Champaign
Brian DeMarco, director of HQAN and physics professor Grainger College of Engineering. Photo credit Brian Stauffer, University of Illinois Urbana-Champaign

“Quantum information science has the potential to change the world. But to realize that potential, we must first answer some fundamental research questions,” said Dr. Sethuraman Panchanathan, NSF Director. “Through the Quantum Leap Challenge Institutes, NSF is making targeted investments. Within five years, we are confident these institutes can make tangible advances to help carry us into a true quantum revolution.”

All quantum architectures rely on quantum states of matter, rather than the simple on-off actions of a transistor. Such a fundamental change in design could lead to capabilities outside the realm of conventional technologies and have impacts in computing, sensing, and communication. In recent years, scientists have been building increasingly powerful, stand-alone processors using a single kind of hardware. HQAN seeks to accelerate the development of larger scale devices by assembling a network of hybrid elements.

“The development of quantum computers is faced with a major challenge in scaling up to high numbers of qubits,” said National Science Foundation Program Director John D. Gillaspy. “This center will explore the feasibility of creating networks of small quantum computers as an alternative to more complex, larger ones. Success from these researchers would mean a faster move toward a quantum computing revolution. HQAN will create three quantum testbeds that discover and refine designs for distributed quantum processors and networks by leveraging the strengths of multiple types of quantum hardware, such as ion traps, superconductors, and neutral atoms."

“Connecting multiple quantum processors in a network could alleviate some of the scaling issues,” said Brian DeMarco, a physics professor at the University of Illinois at Urbana-Champaign who is the director of HQAN. “Our team’sapproach could also open up new opportunities because a hybrid quantum network may be optimal for solving problems that require distributed computing resources.”

In a hybrid quantum network, hardware for storing and processing quantum information is linked together. This design could be beneficial for applications that rely on distributed quantum computing resources. 
 
Image credit: E. Edwards/IQUIST
In a hybrid quantum network, hardware for storing and processing quantum information is linked together. This design could be beneficial for applications that rely on distributed quantum computing resources. Image credit: E. Edwards/IQUIST
The HQAN team includes experts from chemistry, computer science, mathematics, materials science, physics, and engineering, a combination that is necessary to push this area of research and technology development forward.

“The key to constructing a hybrid architecture is the ability to couple different quantum systems to each other. Developing such capabilities requires that experts from multiple fields come together and work on these challenges in a joint effort. This is exactly the unique strength of HQAN," said Hannes Bernien, Co-PI at the University of Chicago’s Pritzker School of Molecular Engineering.

The team will focus on:

· Developing the technology to connect different quantum devices in a network within a single local testbed environment. In this arrangement, quantum information can be routed through a hybrid network.

· Developing a full-stack solution for a distributed computing network. The team will explore new use cases for this network and implement protocols such as quantum fingerprinting and private quantum searching.

· Investigating new types of node architectures, such as protected quantum bits, which have the potential to revolutionize error correction strategies.

“In Wisconsin we have been working for several decades to develop diverse approaches to high performance qubits for computation. The HQAN institute will enable a community of researchers to pool their knowledge and connect the different approaches to synthesize new solutions for distributed quantum information processing,” said Co-PI Mark Saffman, a physics professor at the University of Wisconsin-Madison and Chief Scientist at ColdQuanta.

Aside from the academic collaboration, HQAN includes proposed partnerships with government labs and industry, including American Family Insurance, Air Force Research Lab (Rome, NY), ColdQuanta, IBM, Microsoft, MIT Lincoln Laboratory, Quantum Opus, and Qubittek and intends to collaborate with the Google AI quantum group. HQAN will also offer new undergraduate and graduate education opportunities, including a summer internship program for Chicago State University students, as well as retraining opportunities for engineers and scientists already working in the private sector. Within the three academic institutions, the team will ultimately include about 40 senior personnel and about 40 graduate students and postdoctoral researchers.

 

____________________

The Illinois Quantum Information Science and Technology Center (IQUIST) brings together physicists, electrical engineers, computer scientists, mathematicians, entrepreneurs, and other experts to accelerate growing efforts in quantum information science (QIS) at the University of Illinois Urbana-Champaign. Launched in 2018 with an initial $15 million investment, the IQUIST team encompasses the development of quantum computing, simulation, and sensing from the exploration of fundamental science while implementing novel quantum algorithms and state-of-the-art equipment for the fabrication of quantum materials and devices. The Urbana campus is primed to take a leadership role in the coming quantum information revolution as IQUIST develops QIS-focused educational programs for the next-generation quantum workforce.

The IQUIST team continues the University’s long history of groundbreaking contributions to the development of technologies that have shaped society over the past century, including the quantum-well laser that is at the heart of fiber-optic communications, the first supercomputer at an academic institution, and the first modern web browser. IQUIST collaborators are pursuing promising lines of fundamental research and engineering, including a multi-node quantum testbed that enables researchers to explore and implement new ideas for distributed quantum processing and quantum networks.

IQUIST seeks to build partnerships with research institutions and tech-industry firms beyond the University of Illinois at Urbana-Champaign and is a core partner in the Chicago Quantum Exchange along with the University of Chicago, Argonne National Laboratory, and Fermi National Accelerator Laboratory.